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ABSTRACT
/Qfﬁi
A sufficiency theorem for the stability of a linearly viscoelastic

solid subjected to partial follower surface tractions is established.
It is shown that an appropriately defined functional metric space must
be introduced in order to formulate a well-posed problem, The usual
energy method, if applicable, and the Galerkin method, if convergent,

yield stebility conditions only in a functional space whose metric is

defined in an average sense. / /,’Q{}é/
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1. Introduction

It was shown by R. T. Shield and A. E. Green [1]* that proofs of
the commonly used sufficiency theorems for the stability of a linearly
elastic continuum are, in general, deficient. It is the aim of this
study to indicate, using the stability theorems for partial differ-
ential equations given by Zubov [2], that this deficiency arises from
the definition of stability of a continuum, and is not directly
related to the linearization of the equations of motion governing the
elastic continuum,

At the outset, it is shown that the stability of a continuum
must necessarily be defined with respect to a metric which measures
distance in an infinite~dimensional space. This metric may be
postulated in various suitable forms. The equations of the boundary
velue problem of a continuum, together with an explicitly defined
metric, P, form a functional metric space whose fundamental proper-
ties vary depending upon the specification of p, and thus lead to
different stability criteria. 1In this connection, we shall show that
the usuel energy methods, if applicable, and the Galerkin method, if
convergent, yield stability only with respect to an average metric,

The problem of a linear viscoelastic solid subjected to partial
follower surface tractions is treated in detail and a sufficient
condition for stability of the continuum with respect to an average

metric is established,

*
Numbers in brackets refer to Bibliography at the end of this paper.



2. Statement of the Problem

We consider a finite isotropic, homogeneous, linearly viscoelastic
solid, bounded by a regular surface S, contained in a volume V. At the
time t = O, the solid is irn a state of initial stress oij s 1,j = 1,2,3,
caused by a system of partial follower surface tractions P; » applied
at the boundary S. By partial follower forces we shall mean forces
which follow in a specified manner the deformation of the surface
element upon which they are acting and are therefore dependent upon
the motion of the system. We shall refer to the state of initial stress
of the solid as unperturbed (quilibrium) state aend study its possible
motlions with reference to this state. Furthermore, we shall assume that
the perturbed quantities are small (these quantitites will, subsequently,
be indicated by a bar - ) so that all terms of order higher than.the
second may be neglected. The squations of motion of the perturbed
solid, referred to a fixed orthogonal Cartesian coordinate system,
are [3]

o

+ (o u .= nm i =0 inV
13,0V Cpe B, Y ,

*

dij nj + djk ui,k nj =Py on S, i,J,k = 1,2,3, (1)

where m is the mass density, xj are the coordinates, Ei the displacement

components measured from the unperturbed state, n, the components of the

J
unit normal to S, ﬁi the perturbations of the applied surface tractions.

A comma followed by indices k,j indicates differentiation with respect

*In these equations and in the sequel the repeated indices are
summed over the range of their definitions,



to x, , X and dots denote derivatives with respect to time. We

shall assume here that
p; = al x) Py Yy g on 8 (2)

where a( x ) = a(x1 > Xy s xs) is a parameter which serves to describe
the manner in which the surface tractions follow the deformation, If
u = 0 the system is conservative and for o = 1 we have the case of
follower force introduced in [3]. We shall consider here the cases
where af( x ) is, at least, of class Cl in the region of its defini~

tion [4]. The constitutive equations shall be taken in the form

_ - R - 1
915 = Ciglr Pk, 1) T Ciga Y1) P Y1) T2 1 T UL 0

Cijk1 = M B35 B + 21 35 357

and  Cfyq = N 3y 8y + 200 8y, 3, (3)
where bij is the Kronecker delta, M and u are Lambé constants, and \’
and y/ are viscous constants corresponding to Lamé constants.

A general solution to the nonself-adjoint mixed initial and
boundary value problem (1) cannot, in general, be easily obtained.
Therefore, in order to study the stability of this system, we have to
resort to some other means and, consequently, we shall not expect to
gain as much information concerning stability as we would if we were to
construct and evaluate a genersl solution of the system. As we shall
see in the following section, this is by no means a shortcoming. A

strong stability criterion, that may be imposed on the system and which

could be applied if we were to solve system (1) completely, would be of



doubtful interest.

In this connection, we shall consider a certain functional (which,
in effect, expresses the energy of the system) and explore the stability
of (1) in some appropriate average sense. Furthermore, we shall show
that the usual Galerkin method, which reduces the system of partial
differential equations (1) to a set of ordinary differential equations,
yields the same results as those obtained by a study of the functional
mentioned, provided all the series expansions employed converge in an
average sense,

To this end, we consider a complete set of normelized eigen-
vectors, obteined by solving the homogeneous, self-adjoint system
deduced f?om (1) by setting dij = Cijkl = P; = 0, which has the same
geometrical boundary conditions as the original problem., Let this set
of orthonormal [5] eigenvectors be denoted by {win( x )} 3 1=1,2,3,
n=1,2,..090 . We shall reduce our original system of partial to a

system of ordinary differential equations by expanding u, and its

i
derivatives in terms of these eigenvectors, without any attempt to
resolve the question of convergence. In fact, a rigorous proof of
convergence of the Galerkin method, as applied to nonself-adjoint
linear differential operators, does not, to the best knowledge of the
authors, as yet exist. However, some comparison between the results

obtained by applying this method to some simple problems and the exact

3*
solutions [3], certainly suggests that convergence may be assumed,

#*
The paradox in the problem of flutter of a membrane, as was shown
in [3], is not related to the fact that the system is nonself-adjoint.



In our problem, we shall therefore state that if convergence exists
(in an average sense at least) then the two methods yield identical
results.,

Let us now consider the fundamental question concerning stability

of a solid.,



3. Concept of the Stability of a Contlnuum

The concept of the stability of a state of a dynamic system with
a finite number of degrees of freedom has a significant geometrical
meaning, We consider a system with r degrees of freedom described by
generalized coordinates q, and generalized velocities E;n H
D= 1,2,eeeyr o« For a holonomic and autonomous system, we write the
equations of motion as

inz fn (zl 9 22 ooo’zzr) H n-= 1,2,...,21' (4)

where 2, =9, >

n - Y

n= 1,2,.00,1' »

“we

and fn( z ) are bounded, continuous, real functions vanishing for
2, = 0 . We assume fn satisfy all the conditions required for the
existence of a single-valued solution for t > O in the region of the
definition of Z, . Furthermore, we represent the state of this
dynamic system by a point in a 2r-dimensional Euclidean space, EZr ’
with coordinates z, 5 0= 1,2,¢0052r « The equilibrium state of the

system at the origin is said to be stable if for any € > O we can find
2r

a % > 0 depending on € only such that when Zzi( batt=0, we
=1

r

have Z zi € for a11 t > 0 . In the opposite case z, = 0 is
=1

called unstable [6]. Furthermore, 2, =0 is called asymptotically

stable if it is stable and tlim [ iz;’i] -0,
~* 0 n=

The above definitions of stability are due to Liapunov [6].



He also supplied the proofs of necessity and sufficiency, employing
the notion of distance in the finite~dimensional Euclidean space E2r .
For systems with an infinite number of degrees of freedom (con-
tinuous systems) the notion of distance in an infinite dimensional
space needs to be introduced, if one wishes to extend Liapunov's con-
cepts to such systems. In this case, we have to be concerned with
functionals rather than functions and must explicitly define a measure
(metric) of distance of two states of the system and then study the
stability of the system with respect to this metric, p. The metric
p may be selected in any suitable manner (provided it satisfies three
fundamental conditions [7]) so as to fulfill some physical require-
ments of the problem at hand., It msy be desirable, for example, to

1limit the displacements and the velocities at each point of the

g0lid, in which case we define

e e

=u, u, +

Py 3 Yy uy everywhere in V and on‘S .

i
In some other cases, we may wish to restrict the strains as well as
the displacements and the velocities at each point of the solid,

such that

- - L2 2 -
= U, u, + u, u, +

92 1 Y 3 Yy ui,j ui,j everywhere in V and on § .

For most practical problems, however, it is usually preferable

to define p in an average sense; for example
Py = jv [ uu o+ Uy g Uy g Uy lav .

We now state the definition of the stability of the initial state



of a solid with respect to an explicitly defined metric p [2] , by
appropriately extending the corresponding definition for a finite
system,
The initial state of the continuous solid is said to be stable
if for a given € > O we can find a b > 0 depending on € only such
that when p ¢ 5 at t = 0O we have p¢ € for all t > 0 . In the
opposite case, the initial state is called unstable. Furthermore,
the unperturbed state 1s called asymptotically stable if it is
stable and t%}ﬁn p+ 0 . The sufficiency theorem of stability may
now be statvea &3
Theorem:
In order that the unperturbed state of system (1) be
stable with respect to a metric p , it is sufficient
that there exists, by virtue of the requirements of the
boundary value problem (1), a finite, non—iﬁcreasing
functional which is identically equal to zero for p = 0
and admits an infinitely smell upper bound with respect
to the metric p .
The sbove theorem is an appropriate version of the theorem of stability
given by A. A. Movchan [8]. In the sequel we shall use this theorem to
establish a sufficiency criterion for the stability of system (1). But
let us first discuss some aspects of the definition of stability.
It is seen that the stability criteria are highly dependent upon

the specification of the metric p . We may not, therefore, expect to



| apply a criterion obtained, say, for p3 to p2 and get like results.
The problem which was treated by R. T. Shield and A, E. Green [1]

may exemplify this very point. An isotropic, homogeneous, linearly
elastic sphere was perturbed by radially symmetric applied infinite~
simal disturbances at t = O and it ﬁas shown that the strain at the
center of the sphere can become finite for some t > O . Let us show
that although this system is unstable with respect to the metric Py
it is stable with respect to p3 o To this end we consider the follow-

ing functional®
_1 2 & , - -
H =3 [ IV (mug wy +Cyypq Wy 5 g 4)dv ]
whose time derivative is zero by virtue of the equations of motion,

and which admits an infinitesimal upper bound with respect to the

metric Py e From the inequalities {11, 12, 13]

- - < - -
Cl.rv u, u dv < IV ui,j ui,j dv ,

c, Iv T J'V Copr By, g %,1 O
which are velid for all admissible motions of the solid with Cl and

C, being fixed positive constants independent of Ei , we immediately

2
construct the inequality

H, 2 K Py for e11 t 20,

1

*In reference [9] A. A. Movchan has proved some stability and
instability theorems for a linearly elastic solid subjected to con-
servative forces. See also [10].
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vhere K is also a fixed positive number not dependent on Ei o« We
let Hl < Ke and obtain 93 <eat t=0, But Hy is a non-increasing
function of time. Therefore Ke is an upper bound of H1 for all
t 20, which implies

p3<e for all t 20 .
In [1], the initial disturbances were taken to be

_u_0u_ o 2 1. ey | -
w=B8=8o0, =281 r() |5 att=0

where r measures distances from the center of the spheres, ¢ = }_irga

and f(r) is given by

f(r) =0 0<r<fa
I § 4
f(r) = (r - a)* (r - a - 2¢a) asr<a+ 2a
55
£ a
f(r) =0 a+2asr.,

A simple calculation shows that p, = O(g) at t = O . Furthermore, at

3
t = a/c we have, for 0 < r £ 2¢a,

u= r? (2¢ca - r)3 (7r - 6¢ga)

55

£ &

which immediately yields p., = O(e) at t = a/c , while the strain at

3
the center of the sphere at this instant is finite:

u - du _
[r]r=ea"l’ [3? r=ga” 0
In this example, one is able to obtain an exact solution to the

differential equations of the boundary value problem. Therefore, one

is in the position of requiring as strong a stability criterion as
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one pleases. We see that the system is not stable with respect to Pys
although it is stable with respect to 93 « The important point
to note in this connection is that the stability with respect to the
metric 93 could have been deduced without possessing an explicit
solution of the problem,

In most practical problems, the system may well be stable for all
practical purposes, while it may not satisfy the point-wise stability

conditions with respect to the metrics Pl and P In those cases

2.
there may exist a finite number of points in V where an infinitesimal
perturbation at t = O may cause finite, say, strains at these points

for some t > 0 . If the collection of these points forms a set with

measure zero, then the stability may exist with respect to the

metric P3 .

The metric P, seems to be more appealing also from a purely

3
mathematical point of view. In this regard, let us note that the
serlies expansion of a piecewise continuous function in a finite domain
is an approximation in a mean square sense and not a pointwise repre-

sentation, The following discussion will, therefore, be devoted to

the stability of system (1) with respect to the metric Py e



4e Analysis of Stabilit

We consider a functional H given by

{I [““ u 1% Cija 13“1:1*(1‘“) jk ik 1,,]] dv +

t & & [ ]
, 2 - s
+ 2 i IV [Cijkl Uy ey T djk (a ui,j),k ui] dvdt } (5)
and note that, from the requirements of the boundary value problem (1),

H is a continuous functional which vanishes identically at the initial

unperturbed state of the solid, p3 = 0 ., The total time derivative of

H is

e 2 A - 2
f (mouy up + €509 1j“k1+(1‘“)°jk“1,k“1,j+

Ciyka %,5 %1~ g (@ U9 x “1] dv . (6)

But we have
- ‘ 2 KX - -
fv (04531 %1 * Cigia W,1] Wy, 9V = fs %3 8y “1 ds -

-f ij,J u av,
and
jv{ (L-a)oywy puy =0y (@w )y } dv = -

- f (o %k Uy k],j u, dv +'[s [ojk Uy By =GPy ui,k] u, ds,
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where in the last reduction we have used the fact that for the unper-
turbed state we have '

dij,j=o in vV and djknkzpj onS.

Equation (5) now becomes

%%=fv{mﬁi - zij,J - (djk ;i,k),j }ti dv +

+stdij nj+°jk Uy y By G Py Y ]ui ds (7)

which is identically equal to zero by virtue of equations (1) for all
admissible perturbed motions of the solid., Moreover, if H is a
positive definite functional, then it admits an infinitely small upper
bound with respect to p; . To show this we let 1511 <~e , Iﬁil <Ve
and IEMI <~e at t = 0, and obtain

p3<15Vs at t =0,
Then, as H > 0, we have
HCKe=2? att=0,
where K -il a positive constant, But ¢ is an upper bound of H for all
t>0, as H is a non-increasing function of time. Therefore, if H is
a positive definite functional, then all the requirements of the
sufficiency theorem are fulfilled and we have the following theorem
Theorea:

For a linearly viscoelastic solid subjected to a set of



partial follower forces to be stable with respect to the
metric 93 , 1t is sufficient that the functional H given
by equation (5) be a positive definite quantity for ad-
missible perturbed motions of the solid about the state
of initiel stress.

Let us note that the requirement of H being a positive definite
functional may imply a stronger stability condition than is given by
Py e This touches then upon the question of the necessary conditions
which will not be dealt with here.

From the above discussion we may conclude that the commonly used
energy methods yield stability criteria with respect to an aversge
metric 93 « Therefore we may not, by any meens, expect to retrieve
any more information than is retained after this averaging process.
This conclusion is also valid for most approximate methods such as
the Ritz, the Galerkin and other methods, where we use some averaging
processes to reduce the system of partial to e set of ordinary differ-
ential equations. We shall explore this point further in the sequel,
but let us meke first another remark regarding system (1) and funct-
ional He We let solution of.(l) be of a form Gi = ¢i (%) ept

and obtain from (5)

_ 2pt 1 2 _
H= o {3 jv[p mby by + Cigpa Va,5 Vi1t (B9 Ty ¥y ‘bi,j:‘ dv +

+ IV [p Cijkl ¢i,j ¢k,l - djk (a wi,j),k ¢11 dv } . (8)
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If we substitute Gi = *i ept into equations (1), we obtain an eigen-
value problem with eigenvalues p . From equation (8) we may conclude
that, for H to be a non-increasing function of time, p must have a
non-positive real part.

We now reduce equations (1) to a set of ordinary differential
equations. We assume that Ei and its derivatives can be expanded in
terms of the complete set of eigenvectors { L7 (x) } ;3 i=1,2,3,

n=1,2,,0.,° 8such that

N
2
n=1 n=1

f |u 1,3 uk 1 2: za¢in,j km, 1 qn(t) qm(t)ldv < €5 »

=1l m=1
N N

fvlui,jk W - Z Z."’in,jk ®in %(t) q(t)]dv < e,
=1l m=1

and

[ 15,1 - ) Znn,j "n1 8 B fav < e,

=1 m=l
i,i,k,1 = 1,2,3 , (9)
for some N > M , where M is a large positive number depending on € 3
i=1,2,.4.5,5 in the above inequalities and €; may be made as small as

we please by selecting M sufficiently large. For such an M, equation
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(7) reduces to

N N N
Z{am*'Lcmnan+“fxz(bmn+bmn)qn}am=o
m=1 n=1 =1

where

o’
I

1
- —— - d - [}
mn = T2 [ fv(l @ %5k Pin,5 Pimi 3 jv gk (@50 5) e Py dV]
m

and

_ ‘
Com = Ivcijkl %n,1 %im,j 47 (10)

In obtaining (10), in addition to the Gauss theorem we have also
utilized the fact that { ®in } are solutions to

2 -
+muW @in_o invVv,

Cijk1 *im,1j n

Cijkl Pm,1 75 =0 om S,

J‘mq’in cpimdv: z>mn ¢
\')
For &m ; m= 1,2,.4.,N not identically zero, equations (10) yield

N N

oe * 2 B

qm+ZCmn qn + wm Z(bmn + bmn) qn =0, m= 1,2,s0eyN , (lol)
=1 n=1

which is a system of non-self-adjoint, ordinary differential equations.

Similarly, H reduces to
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N N
Bzl J{[€+€L ]+ Loamu
=1 =1

t N _
+2£ Z[cm&nam+bmnqnam]dt},
=1l

where 8., fv(l = 4) %5 ®4n5 Pimyk 9V

b = .[v"jk CR A R
and b_=—= (s +5) (11)
mn 2 ‘'mn mn’ °*
m

For a positive definite H in a region p3 <R;R”>0, we can find
an M such that H is also a positive definite quantity within a ring

R1 < p3 < R , where 93 is defined by

N
;3 = E:(qi + éﬁ) in a 2N-dimensional Buclidean space. More-

=1
over, ﬁl is dependent only upon &, in inequalities (9) and may be made
as small as we please by choosing M large enough. From the stability
theorem we therefore conclude that, for system (1) to be stable with
respect to the metric p3 , 1t is sufficient that H Be a positive
definite quantity. But H vanishes for ;3 = 0 and %% is identically
equal to zero along any path satisfying equations (10’). Therefore,

by Liapunov's stability theorem [6], system (10’) is stable when H



is a positive definite quantity, and likewise when H is a positive
definite quantity. |

The study of stability of the system of linear homogeneous
ordinary differential equations (10) is, however, a classical
mathematical problem. For the stability of (10'), it is necessary
and sufficient that the roots of the characteristic equation of (10')
have non-positive real parts. However, the study of the function ﬁ,
which in fact is a statement of the energy of the system, can provide
us with a better insight into the physical behavior of the system.
We shall consider this aspect in detail in another study and merely
note here that there exist two distinct modes of instability of
system (1l). One is characterized by divergent motion or the existence
of an adjacent equilibrium configuration, the other by flutter or the
existence of an amplified oscillation, Divergent motion may occur if,
for a virtual (static) displacement of the system, the work of the
applied forces equals the change in the strain energy of the system,

namely

1 - - - -

- - g -
b fv 2 [Cijkl 5,1t (1m0 O Uy Yy g Jov
_fvajk (a8 ;) 89, av=0,

or equivalently
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l - -— - -
b fv 2 [Cijkl Uy %1t %k YL B, ]d" -

- fsa pJ. ui,j bui ds = (12)

‘where b is the variational symbol.

Let us now assume that a is functlon of a real parameter ¥y ;
-© <y <+®, in addition to x; , x, , and X3 508 a(x1 » Xy 5 X35 Y) .
Moreover, we consider a proportional loading B pj( x ) , where B is
a finite, dimensionless, real number; 0 < B < ®, In this way, the
plane of B~y is divided into regions of stability and instability
by equation (12). The effect of the linear viscosity (equation (3)),
in this case, is to make the stability regions a closed set (except,
possibly, for a set with measure zero; a finite number of isolated
points in this plane.).

The limiting condition for the flutter of system (1), by con-

trast, is obtained when

-
w , s s - Y
= - d =
Hy .£ fv [Cijkl g e ” O (@0 g) Yy J avat = o
where w is the frequency of steady state oscillation of the solid
about its unperturbed state. The motion of the solid decays if

H, > O and amplifies if H, <0 .

3 3



5. Concluding Remarks

In conclusion it should be emphasized that the sufficiency
theorem for the stability of a linearly viscoelastic solid sub-
Jected to partial follower surface tractions advanced in this study
has been established only with respect to a particular functional
metric space. This work, then, in effect, is an illustration of
the indispensability of an explicitly defined metric and no attempt
was made to establish a necessity theorem. Nor was the question
raised as to the convergence of the Galerkin method as applied to
non-self-adjoint operators. Likewlse, the important problem of the
possible role of nonlinearity of various sources was deliberately
excluded. The two different types of loss of stability (divergent
motion and flutter), possible in the presence of follower forces,
were mentioned only briefly and will be treated in detail for a
general finite system in a separate investigation. The destabilizing
effect of linear viscous damping in a continuous system subjected to

nonconservative forces will also be discussed elsewhere.
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